
 Galilean conformal algebras and AdS/CFT

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP07(2009)037

(http://iopscience.iop.org/1126-6708/2009/07/037)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:11

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/07
http://iopscience.iop.org/1126-6708/2009/07/037/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
7
(
2
0
0
9
)
0
3
7

Published by IOP Publishing for SISSA

Received: April 6, 2009

Accepted: June 12, 2009

Published: July 10, 2009

Galilean conformal algebras and AdS/CFT

Arjun Bagchi and Rajesh Gopakumar

Harish-Chandra Research Institute,

Chhatnag Road, Jhusi 211019, India

E-mail: arjun@hri.res.in, gopakumr@hri.res.in

Abstract: Non-relativistic versions of the AdS/CFT conjecture have recently been in-

vestigated in some detail. These have primarily been in the context of the Schrodinger

symmetry group. Here we initiate a study based on a different non-relativistic conformal

symmetry: one obtained by a parametric contraction of the relativistic conformal group.

The resulting Galilean conformal symmetry has the same number of generators as the rela-

tivistic symmetry group and thus is different from the Schrodinger group (which has fewer).

One of the interesting features of the Galilean Conformal Algebra is that it admits an ex-

tension to an infinite dimensional symmetry algebra (which can potentially be dynamically
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tions of this extended symmetry in a boundary field theory. We also propose a somewhat

unusual geometric structure for the bulk gravity dual to any realisation of this symmetry.
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1 Introduction

Even after more than a decade, the AdS-CFT conjecture [1] continues to throw up rich,

new avenues of investigation. One such recent direction has been to consider extensions of

the conjecture from its original relativistic setting to a non-relativistic context. This opens

the door to potential applications of the spirit of gauge-gravity duality to a variety of real-

life strongly interacting systems. It was pointed out in [2] that the Schrodinger symmetry

group [3, 4], a non-relativistic version of conformal symmetry, is relevant to the study of

cold atoms. A gravity dual possessing these symmetries was then proposed in [7, 8] (see

also [9, 10] for a somewhat different bulk realisation). Further developments along this line

can be found in [11]–[38].

Instead of the Schrodinger group, in this paper, we will consider an alternative non-

relativistic realisation of conformal symmetry and begin a study of its consequences and

realisations in the context of the AdS/CFT conjecture. This symmetry will be obtained

by considering the nonrelativistic group contraction of the relativistic conformal group

– 1 –



J
H
E
P
0
7
(
2
0
0
9
)
0
3
7

SO(d+1, 2) in d+1 space-time dimensions.1 The process of group contraction leads, in d =

3, for instance, to a fifteen parameter group (like the parent SO(4, 2) group) which contains

the ten parameter Galilean subgroup. This Galilean conformal group is to be contrasted

with the twelve parameter Schrodinger group (plus central extension) with which it has in

common only the Galilean subgroup. The Galilean conformal group is, in fact, different

from the Schrodinger group in some crucial respects, which we will describe in more detail

later. For instance, the dilatation generator D̃ in the Schrodinger group scales space and

time differently xi → λxi, t → λ2t. Whereas the corresponding generator D in the Galilean

Conformal Algebra (GCA) scales space and time in the same way xi → λxi, t → λt.

Relatedly, the GCA does not admit a mass term as a central extension. Thus, in some

sense, this symmetry describes ”massless” or ”gapless” non-relativistic theories, like the

parent relativistic group but unlike the Schrodinger group.

However, the most interesting feature of the GCA seems to be its natural extension to

an infinite dimensional symmetry algebra (which we will also often denote as GCA when

there is no risk of confusion). This is somewhat analogous, as we will see, to the way in

which the finite conformal algebra of SL(2, C) in two dimensions extends to two copies of

the Virasoro algebra. We will see that it is natural to expect this extended symmetry to be

dynamically realised (perhaps partially) in actual systems possesing the finite dimensional

Galilean conformal symmetry. Indeed, it has been known (see [47] and references therein)

that there is a notion of a ”Galilean isometry” which encompasses the so-called Coriolis

group of arbitrary time dependent (but spatially homogeneous) rotations and translations.

In this language, our infinite dimensional algebra is that of ”Galilean conformal isometries”.

As we will see, it contains one copy of a Virasoro together with an SO(d) current algebra

(on adding the appropriate central extension).

In addition to possible applications to non-relativistic systems, one of the motivations

for studying the contracted SO(d+1, 2) conformal algebra is to examine the possibility of a

new tractable limit of the parent AdS/CFT conjecture. In fact, the BMN limit [46] of the

AdS/CFT conjecture is an instance where, as result of taking a particular scaling limit,

one obtains a contraction of the original SO(4, 2) × SO(6) (bosonic) global symmetry.2

In our case, the non-relativistic contraction is obtained by taking a similar scaling limit

on the parent theory. Like in the BMN case, taking this limit would isolate a closed

subsector of the full theory. The presence of an enhanced symmetry in our scaling limit

raises interesting possibilities about the solvability of this subsector. We defer the detailed

study of this aspect for later.

There are, however, some important differences here from a BMN type limit which

have to do with the nature of taking the scaling. Normally the BMN type scaling leads to

1The process of group contraction is, of course, standard and may have been applied by many people to

the relativistic conformal group. To the best of our knowledge, [39] is a recent reference with the explicit

results of this contraction of the relativistic conformal group. This reference goes on to study a realisation

of the 2 + 1 dimensional case, which has some special features.
2An algebraically equivalent contraction to ours, of the isometries of AdS5 × S5, was studied in [53] as

an example of a non-relativistic string theory. However, the embedding of this contraction in AdS5 is not

manifestly such that it corresponds to a non-relativistic CFT on the boundary. We will comment further

on this at a later stage.
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a Penrose limit of the geometry in the vicinity of some null geodesic. These are typically

pp-wave like geometries whose isometry is the same as that of the contracted symmetry

group on the boundary. The non-relativistic scaling limit that leads to the GCA on the

boundary is at first sight more puzzling to implement in the bulk. This is because, under

the corresponding scaling, the bulk metric degenerates in the spatial directions xi. Thus

one might think one has some kind of singular limit in the bulk description. However,

this degeneration is a feature common to all non-relativistic limits. It arises, for instance,

in taking the Newtonian gravity limit of Einstein’s equations in asymptotically flat space.

However, in this case, there is a well defined geometric description of the limit despite

the degeneration of the metric. This description, originally due to Cartan, and studied

fairly thoroughly by geometers describes Newtonian gravity in terms of a non-dynamical

metric but with a dynamical non-metric connection.3 The Einstein’s equations reduce

to equations determining the curvature of this connection in terms of the matter density.

These are nothing but the Poisson equations for the Newtonian gravitational potential. In

geometric terms the spacetime takes the form of a vector bundle with fibres as the spatial

Rd over a base R which is time, together with an affine connection related to the gradient

of the Newtonian potential.

We propose a similar limiting description for the bulk geometry in our case. The main

difference is that the time and the radial direction together constitute an AdS2 with a

non-degenerate metric. Thus one has a geometry with an AdS2 base and the spatial Rd

fibred over it. Once again there is no overall spacetime metric. The dynamical variables are

affine connections determined by the limiting form of Einstein’s equations. As a check of

this proposal, we will see that the infinite dimensional GCA symmetries are realised in this

bulk geometry as asymptotic isometries. In fact the Virasoro generators of the GCA are

precisely the familiar generators of asymptotic global isometries of AdS2. These generators

will also be seen to reduce to the generators of the GCA on the boundary.

The paper is organised as follows. In the next section we first review the Schrodinger

symmetry algebra in order to set notation and contrast it with the Galilean Conformal

Algebra, which we obtain through group contraction on SO(d + 1, 2). In section 3 we

describe the infinite dimensional extension of this algebra and its physical significance.

Section 4 moves onto the bulk realisation of the non-relativistic contraction. We propose

a geometric description of the bulk physics analogous to the Newton-Cartan theory. In

section 5 we lend support to this proposal by finding the vector fields corresponding to

the GCA and its infinite dimensional extension as well as their action on the bulk AdS. In

section 6 we close with a laundry list of things left undone. In two appendices we elaborate

on a couple of points of the main text.

3See the textbook [59] Chap.12 for a basic discussion. We thank T. Padmanabhan for bringing this to

our attention.

– 3 –



J
H
E
P
0
7
(
2
0
0
9
)
0
3
7

2 Non-relativistic conformal symmetries

2.1 Schrodinger symmetry

The Schrodinger symmetry group in (d + 1) dimensional spacetime (which we will denote

as Sch(d, 1)) has been studied as a non-relativistic analogue of conformal symmetry. It’s

name arises from being the group of symmetries of the free Schrodinger wave operator in

(d+1) dimensions. In other words, it is generated by those transformations that commute

with the operator S = i∂t + 1
2m

∂2
i . However, this symmetry is also believed to be realised

in interacting systems, most recently in cold atoms at criticality.

The symmetry group contains the usual Galilean group (denoted as G(d, 1)) with its

central extension.

[Jij , Jrs] = so(d)

[Jij , Br] = −(Biδjr − Bjδir)

[Jij , Pr] = −(Piδjr − Pjδir), [Jij , H] = 0

[Bi, Bj ] = 0, [Pi, Pj ] = 0, [Bi, Pj ] = mδij

[H,Pi] = 0, [H,Bi] = −Pi. (2.1)

Here Jij (i, j = 1 . . . d) are the usual SO(d) generators of spatial rotations. Pr are the d gen-

erators of spatial translations and Bj those of boosts in these directions. Finally H is the

generator of time translations. The parameter m is the central extension and has the inter-

pretation as the non-relativistic mass (which also appears in the Schrodinger operator S).

As vector fields on the Galilean spacetime Rd,1, they have the realisation (in the absence

of the central term)

Jij = −(xi∂j − xj∂i) H = −∂t

Pi = ∂i Bi = t∂i (2.2)

In addition to these Galilean generators there are two more generators which we will

denote by K̃, D̃. D̃ is a dilatation operator, which unlike the relativistic case, scales time

and space differently. As a vector field D̃ = −(2t∂t + xi∂i) so that

xi → λxi, t → λ2t. (2.3)

K̃ acts something like the time component of special conformal transformations. It has the

form K̃ = −(txi∂i + t2∂t) and generates the finite transformations (parametrised by µ)

xi →
xi

(1 + µt)
, t →

t

(1 + µt)
. (2.4)

These two additional generators have non-zero commutators

[K̃, Pi] = Bi, [K̃,Bi] = 0, [D̃,Bi] = −Bi

[D̃, K̃] = −2K̃, [K̃,H] = −D̃, [D̃,H] = 2H. (2.5)

– 4 –
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The generators K̃, D̃ are invariant under the spatial rotations Jij . We also see from the

last line that H, K̃, D̃ together form an SL(2, R) algebra. The central extension term of

the Galilean algebra is compatible with all the extra commutation relations.

Note that there is no analogue in the Schrodinger algebra of the spatial components

Ki of special conformal transformations. Thus we have a smaller group compared to the

relativistic conformal group. In (3+1) dimensions the Schrodinger algebra has twelve gen-

erators (ten being those of the Galilean algebra) and the additional central term. Whereas

the relativistic conformal group has fifteen generators. In the next subsection we will dis-

cuss how to get a nonrelativistic conformal group through group contraction. In the process

of group contraction one does not lose any generators and hence the Galilean Conformal

Algebra we find will have the same number of generators as the group SO(d + 1, 2).

2.2 Contraction of the relativistic conformal group

We know that the Galilean algebra G(d, 1) arises as a contraction of the Poincare algebra

ISO(d, 1). Physically this comes from taking the non-relativistic scaling

t → ǫrt xi → ǫr+1xi (2.6)

with ǫ → 0. This is equivalent to taking the velocities vi ∼ ǫ to zero (in units where

c = 1). We have allowed for a certain freedom of scaling through the parameter r, since

we might have other scales in the theory with respect to which we would have to take

the above nonrelativistic limit. We will later consider the example of nonrelativistic fluid

mechanics, in which we have a scale set by the temperature. In this case the natural scaling

corresponds to r = −2. However, for the process of group contraction the parameter r will

play no role apart from modifying an over all factor which is unimportant. Hence we will

mostly take r = 0.

Starting with the expressions for the Poincare generators (µ, ν = 0, 1 . . . d)

Jµν = −(xµ∂ν − xν∂µ) Pµ = ∂µ, (2.7)

the above scaling gives us the Galilean vector field generators of (2.2)

Jij = −(xi∂j − xj∂i) P0 = H = −∂t

Pi = ∂i J0i = Bi = t∂i. (2.8)

They obey the commutation relations (without central extension) of (2.1). This should

be contrasted with the Poincare commutators

[Jij , Jrs] = so(d)

[Jij , Br] = −(Biδjr − Bjδir)

[Jij , Pr] = −(Piδjr − Pjδir), [Jij ,H] = 0

[Bi, Bj ] = −Jij, [Pi, Pj ] = 0, [Bi, Pj ] = δijH

[H,Pi] = 0, [H,Bi] = −Pi (2.9)

– 5 –
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To obtain the Galilean Conformal Algebra, we simply extend the scaling (2.6) to the

rest of the generators of the conformal group SO(d + 1, 2). Namely to

D = −(x · ∂) Kµ = −(2xµ(x · ∂) − (x · x)∂µ) (2.10)

where D is the relativistic dilatation generator and Kµ are those of special conformal

transformations. The non-relativistic scaling in (2.6) now gives (see also [39])

D = −(xi∂i + t∂t)

K = K0 = −(2txi∂i + t2∂t)

Ki = t2∂i. (2.11)

Note that the dilatation generator D = −(xi∂i + t∂t) is the same as in the relativistic

theory. It scales space and time in the same way xi → λxi, t → λt. Therefore it is different

from the dilatation generator D̃ = −(2t∂t + xi∂i) of the Schrodinger group. Similarly, the

temporal special conformal generator K in (2.11) is different from K̃ = −(txi∂i + t2∂t).

Finally, we now have spatial special conformal transformations Ki which were not present

in the Schrodinger algebra. Thus the generators of the Galilean Conformal Algebra are

(Jij , Pi,H,Bi,D,K,Ki).

Since the usual Galilean algebra G(d, 1) for the generators (Jij , Pi,H,Bi) is a sub-

algebra of the GCA, we will not write down their commutators. The other non-trivial

commutators of the GCA are [39]

[K,Ki] = 0, [K,Bi] = Ki, [K,Pi] = 2Bi

[Jij ,Kr] = −(Kiδjr − Kjδir), [Jij ,K] = 0, [Jij ,D] = 0

[Ki,Kj ] = 0, [Ki, Bj ] = 0, [Ki, Pj ] = 0, [H,Ki] = −2Bi,

[D,Ki] = −Ki, [D,Bi] = 0, [D,Pi] = Pi,

[D,H] = H, [H,K] = −2D, [D,K] = −K. (2.12)

This can again be contrasted with commutators of the corresponding relativistic gen-

erators

[K,Ki] = 0, [K,Bi] = Ki, [K,Pi] = 2Bi

[Jij ,Kr] = −(Kiδjr − Kjδir), [Jij ,K] = 0, [Jij ,D] = 0

[Ki,Kj ] = 0, [Ki, Bj ] = δijK, [Ki, Pj ] = 2Jij + 2δijD

[H,Ki] = −2Bi, [D,Ki] = −Ki, [D,Bi] = 0, [D,Pi] = Pi,

[D,H] = H, [H,K] = −2D, [D,K] = −K. (2.13)

We can also compare the relevant commutators in (2.12) with those of (2.5) and we

notice that they too are different. Thus the Schrodinger algebra and the GCA only share

a common Galilean subgroup and are otherwise different. In fact, one can verify using

the Jacobi identities for (D,Bi, Pj) that the Galilean central extension in [Bi, Pj ] is not

admissible in the GCA. This is another difference from the Schrodinger algebra, which as

mentioned above, does allow for the central extension. Thus in some sense, the GCA is

the symmetry of a ”massless” (or gapless) nonrelativistic system. We will discuss some

possible realisations in the next section.

– 6 –
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3 The infinite dimensional extended GCA

The most interesting feature of the GCA is that it admits a very natural extension to an

infinite dimensional algebra of the Virasoro-Kac-Moody type.4 To see this we denote

L(−1) = H, L(0) = D, L(+1) = K,

M
(−1)
i = Pi, M

(0)
i = Bi, M

(+1)
i = Ki. (3.1)

The finite dimensional GCA which we had in the previous section can now be recast as

[Jij , L
(n)] = 0, [L(m),M

(n)
i ] = (m − n)M

(m+n)
i

[Jij ,M
(m)
k ] = −(M

(m)
i δjk − M

(m)
j δik), [M

(m)
i ,M

(n)
j ] = 0,

[L(m), L(n)] = (m − n)L(m+n). (3.2)

The indices m,n = 0,±1 We have made manifest the SL(2, R) subalgebra with the gener-

ators L(0), L(±1). In fact, we can define the vector fields

L(n) = −(n + 1)tnxi∂i − tn+1∂t

M
(n)
i = tn+1∂i (3.3)

with n = 0,±1. These (together with Jij) are then exactly the vector fields in (2.2)

and (2.11) which generate the GCA (without central extension).

If we now consider the vector fields of (3.3) for arbitrary integer n, and also define

J (n)
a ≡ J

(n)
ij = −tn(xi∂j − xj∂i) (3.4)

then we find that this collection obeys the current algebra

[L(m), L(n)] = (m − n)L(m+n) [L(m), J (n)
a ] = −nJ (m+n)

a

[J (n)
a , J

(m)
b ] = fabcJ

(n+m)
c [L(m),M

(n)
i ] = (m − n)M

(m+n)
i . (3.5)

The index a labels the generators of the spatial rotation group SO(d) and fabc are the cor-

responding structure constants. We see that the vector fields generate a SO(d) Kac-Moody

algebra without any central terms. In addition to the Virasoro and current generators

we also have the commuting generators M
(n)
i which function like generators of a global

symmetry. We can, for instance, consistently set these generators to zero. The presence of

these generators therefore do not spoil the ability of the Virasoro-Kac-Moody generators

to admit the usual central terms in their commutators.

What is the meaning of this infinite dimensional extension? Do these additional vector

fields generate symmetries?

There is a relatively simple interpretation for the generators M
(n)
i , L(n), J

(n)
a . We know

that Pi = M
(−1)
i , Bi = M

(0)
i ,Ki = M

(1)
i generate uniform spatial translations, velocity

4After obtaining these results we came to learn of a similar Virasoro extension of the Schrodinger

group [5]. The actual algebra is different from the one described here.

– 7 –



J
H
E
P
0
7
(
2
0
0
9
)
0
3
7

boosts and accelerations respectively. In fact, it is simple to see from (3.3) that the M
(n)
i

generate arbitrary time dependent (but spatially independent) accelerations.

xi → xi + bi(t). (3.6)

Similarly the J
(n)
ij in (3.4) generate arbitrary time dependent rotations (once again space

independent)

xi → Rij(t)xj (3.7)

These two set of generators together generate what is sometimes called the Coriolis group:

the biggest group of ”isometries” of ”flat” Galilean spacetime [47].

Recall that in the absence of gravity Galilean spacetime is characterised by a degenerate

metric. The time intervals are much larger than any space-like intervals in the nonrela-

tivistic scaling limit (2.6). We thus have an absolute time t and spatial sections with a flat

Euclidean metric. We can, in a precise sense, describe the analogue of the isometries in

this Galilean spacetime. The Coriolis group by virtue of preserving the spatial slices (at

any given time) are the maximal set of isometries. See appendix A for more details. This

realisation of the current algebra in our context is a bit like the occurence of a loop group.

The generators L(n) have a more interesting action in acting both on time as well as

space. We can read this off from (3.3)

→ f(t), xi →
df

dt
xi. (3.8)

Thus it amounts to a reparametrisation of the absolute time t. Under this reparametrisation

the spatial coordinates xi act as vectors (on the worldline t). It seems as if this is some kind

of ”conformal isometry” of the Galilean spacetime, rescaling coordinates by the arbitrary

time dependent factor df
dt

.

With this interpretation of the infinite extension of the GCA, one might expect that

it ought to be partially or fully dynamically realised in physical systems where the finite

GCA is (partially or fully) realised. We will see below an example which lends support to

this idea. We will also see in section 5 that the bulk geometry which we propose as the

dual has the extended GCA among its asymptotic isometries. An analogy might be two

dimensional conformal invariance where the Virasoro algebra is often a symmetry when

the finite conformal symmetry of SL(2, C) is realised. And the (two copies of the) Virasoro

generators are reflected in the bulk AdS3 as asymptotic isometries.

Given that the Galilean limit can be obtained by taking a definite scaling limit within

a relativistic theory, we expect to see the GCA (and perhaps its extension) as a symmetry

of some subsector within every relativistic conformal field theory. For instance, in the

best studied case of N = 4 Yang-Mills theory, we ought to be able to isolate a sector

with this symmetry. One clue is the presence of the SL(2, R) symmetry together with

the preservation of spatial rotational invariance. One might naively think this should be

via some kind of conformal quantum mechanics obtained by considering only the spatially

independent modes of the field theory. But this is probably not totally correct for the

indirect reasons explained in the next paragraph.

– 8 –
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Recently, the nonrelativistic limit of the relativistic conformal hydrodynamics, which

describes the small fluctuations from thermal equilibrium, have been studied [40–42]. One

recovers the non-relativistic incompressible Navier-Stokes equation in this limit. The sym-

metries of this equation were then studied by [41] (see also [42]). One finds that all the

generators of the finite GCA are indeed symmetries5 except for the dilatation operator D.6

In particular it has the Ki as symmetries. It is not surprising that the choice of a temper-

ature should break the scaling symmetry of D.7 The interesting point is that the arbitrary

accelerations M
(n)
i are also actually a symmetry [43] (generating what is sometimes called

the Milne group [47]). Thus we have a part of the extended GCA as a symmetry of the non-

relativistic Navier-stokes equation which should presumably describe the hydrodynamics in

every nonrelativistic field theory. In particular, the closed non-relativistic subsector within

every relativistic conformal field theory should have a hydrodynamic description governed

by the Navier-Stokes equation. This might seem to suggest that this sector ought to have

more than just the degrees of freedom of a conformal quantum mechanics.

Coming back to the Navier-Stokes equation, if the viscosity is set to zero, one gets the

incompressible Euler equations

∂tvi(x, t) + vj∂jvi(x, t) = −∂ip(x, t) (3.9)

In this case one has the entire finite dimensional GCA being a symmetry since D is now

also a symmetry. It is the viscous term which breaks the symmetry under equal scaling of

space and time. This shows that one can readily realise ”gapless” non-relativistic systems

in which space and time scale in the same way!8

4 The bulk dual

Given a particular instance of an AdS/CFT duality, we should be able parametrically to

take the non-relativistic scaling limit on both sides of the duality. On the field theory side,

as we have discussed, the relativistic conformal invariance reduces to the GCA with a possi-

ble infinite dimensional dynamical extension. On the string theory side it should be possible

to take a similar scaling limit along the lines of the non-relativistic limit studied in [51–53].

Below we will only consider features of this scaling limit when the parent bulk theory is well

described by gravity. This will already involve some novel features. This has to with the

fact that the usual pseudo-riemannian metric degenerates when one takes a non-relativistic

limit. Nevertheless, there is a well defined, albeit somewhat unfamiliar, geometric descrip-

tion of gravity in such a limit [59]. In the (asymptotically) flat space case this is known

as the Newton-Cartan theory of gravity which captures Newtonian gravity in a geometric

5For a realisation of the Schrodinger symmetry in the context of the Navier-Stokes equation see [44, 45].
6The generator K acts trivially.
7However, one can define an action of the D̃ as in (2.3) to be a symmetry.
8Inonu and Wigner [49] have considered representations of the Galilean group without the mass

extension and concluded that a particle interpretation of states of the irreducible representations is subtle.

In particular such states are not localisable. Just as in the case of relativistic conformal group it is likely

that observables such as the S-matrix are ill-defined. We thank Sean Hartnoll for bringing this reference

to our attention.

– 9 –



J
H
E
P
0
7
(
2
0
0
9
)
0
3
7

setting. This is a non-metric gravitational theory. The dynamical variables are affine con-

nections. Einstein’s equations reduce to equations for the curvature of these non-metric

connections. One can generalise this to the case of a negative cosmological constant as well.

A variant of this is what we propose below as the right framework for the gravity dual of

systems with the GCA. In the next subsection we will briefly review features of the Newton-

Cartan theory and then go onto describe the case with a negative cosmological constant.

4.1 Newton-Cartan theory of gravity

In the Newton-Cartan description of gravity, the (d + 1) dimensional spacetime M has a

time function t on it which foliates the spacetime into d dimensional spatial slices. Stated

more precisely (see for example [60]): one defines a contravariant tensor γ = γµν∂µ ⊗ ∂ν

(µ, ν = 0 . . . d) such there is a time 1-form τ = τµdxµ which is orthogonal to γ in the sense

that γµντµ = 0. The metric γ, which has three positive eigenvalues and one zero eigenvalue,

will be the non-dynamical spatial metric on slices orthogonal to the worldlines defined by τ .

There is no metric on the spacetime as a whole. In fact, its geometric structure is that of a fi-

bre bundle with a one dimensional base (time) and the d dimensional spatial slices as fibres.

The dynamics is encoded in a torsion free affine connection Γµ
νλ on M . We will demand

that this connection is compatible with both γ and τ i.e.

∇ργ
µν = 0 ∇ρτν = 0. (4.1)

This enables one to define a time function t (”absolute time”) since we have τµ = ∇µt. Un-

like the Christoffel connections which are determined by the spacetime metric in Einstein’s

theory, this Newton-Cartan connection is not fixed by just these conditions. One has to

impose some additional relations. Defining Rµν
λσ = γναRµ

λασ , one can define a Newtonian

connection as one which obeys the additional condition Rµν
λσ = Rνµ

σλ.9

In the presence of matter sources specified by a contravariant second rank stress tensor

T µν , which is additionally required to be covariantly conserved ∇µT µν = 0, we can write

down the field equations which determine the connection in terms of the sources. This is

best done by introducing a ”time” like metric gµν = τµτν which is orthogonal to the spatial

metric γµν . The field equations are then familiar in form

Rµν = 8πG

(

Tµν −
1

2
gµνT

)

(4.2)

where Tµν = gµαgνβTαβ and T = gαβTαβ. Note that to define the Ricci tensor Rµν (unlike

the Ricci scalar R) one does not need a metric, only the affine connection.

When one chooses coordinates such that γ = δij∂i ⊗ ∂j (i, j = 1 . . . d), τ = dt, the

non-zero components of the Newtonian connection take the form (imposing appropriate

boundary conditions at infinity) Γi
00 = ∂iΦ. The field equations then reduce to Poisson’s

equations with Φ being the Newtonian gravitational potential and the source being the

matter density ρ = T 00.

9In Einstein gravity with the Christoffel connection and γ being the nondegenerate spacetime metric,

this relation is identically satisfied but here it has to be imposed additionally.
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This is, of course, an intrinsic characterisation of Newtonian gravity. Not unsurpris-

ingly, this geometric structure has also been shown to arise in the degenerating limit of

a usual Einsteinian geometry [54]. Namely, one can study a one parameter (ǫ) family of

usual Lorentzian signature metrics, with the non-relativistic limit ǫ → 0 leading to a de-

generate metric. The condition that this limiting geometry be a Newtonian spacetime is

satisfied under fairly mild conditions on the ǫ dependence of the Lorentzian metric (and

therefore the associated geometric objects such as the covariant derivative, curvature tensor

etc.). This shows that the nonrelativistic scaling limit is a sensible one to take of a generic

Einsteinian geometry.

4.2 Newtonian limit of gravity on AdSd+2

We would like to parametrically carry out the non-relativistic scaling on the bulk AdSd+2

which would capture the physics of the nonrelativistic limit in the (d + 1) dimensional

boundary theory. In the next section we will describe the bulk scaling in more detail. Here

we will simply motivate its qualitative features and give the resulting Newton-Cartan like

description of the bulk geometry.

We know that the boundary metric degenerates in the nonrelativistic limit with the d

spatial directions scaling as xi ∝ ǫ while t ∝ ǫ0. We expect this feature to be shared by

the bulk metric. One expects that the geometry on constant radial sections to have such a

scaling. Since the radial direction of the AdSd+2 is an additional dimension, we have to fix

its scaling. The radial direction is a measure of the energy scales in the boundary theory via

the holographic correspondence. We therefore expect it to also scale like time i.e. as ǫ0. This

means that in the bulk the time and radial directions of the metric both survive when per-

forming the scaling. Together these constitute an AdS2 sitting inside the original AdSd+2.

What this implies for the dynamics is that we should have a Newton-Cartan like

description but with the special role of time being replaced by an AdS2. The geometric

structure, in analogy with that of the previous section, is that of a fibre bundle with AdS2

base and the d dimensional spatial slices as fibres.

Accordingly, we will consider a (”spatial”) metric γ = γµν∂µ ⊗ ∂ν (µ, ν = 0 . . . d +

1) which now has two zero eigenvalues corresponding to the time and radial directions.

(In a canonical choice of coordinates these directions will correspond to µ = 0, d + 1).

Mathematically the two null eigenvectors will be taken to span the space of left invariant

1-forms of AdS2. These will also define the AdS2 metric gαβ in the usual way (This is the

analogue of the time metric defined in the previous subsection).

We will once again have dynamical, torsion free affine connections Γµ
νλ which are com-

patible with both the spatial and AdS2 metrics

∇ργ
µν = 0 ∇ρgαβ = 0. (4.3)

There will also be Christoffel connections from the AdS2 and spatial metrics which will not

be dynamical if we do not allow these metrics, specifically gµν , to fluctuate. We will also

impose the condition below (4.1) on the Riemann tensor.

In standard Poincare coordinates where γ = z2δij∂i ⊗ ∂j (i, j = 1 . . . d) and

gαβdxαdxβ = 1
z2 (dt2 − dz2), the non-zero components of the dynamical connection can
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be taken to be Γi
ab(t, z, xi) = ∂iΦab(t, z, xi) (with a, b = 0, d + 1). There will be Christoffel

components from γ and g as mentioned above.

The field equations are the expected modification of (4.2)

Rµν − Λgµν = 8πG

(

Tµν −
1

2
gµνT

)

(4.4)

where Tµν = gµαgνβTαβ and T = gαβTαβ and Λ is the cosmological constant. These are

dynamical equations for the fields Φab(t, z, xi) once the stress tensor T ab(t, z, xi) in the

AdS2 directions is specified.

5 GCA in the bulk

In this section we will carry out the non-relativistic scaling limit on the AdS5 piece of

the bulk. We will also do this for the SO(4, 2) isometries of AdS5 and obtain the same

contracted algebra as in section3.10 We will then see how the infinite dimensional extension

of this algebra is realised in the bulk. They will have the interpretation as being the

generators of asymptotic isometries of the bulk Newton-Cartan like geometry described in

the previous section. Since asymptotic isometries, under appropriate circumstances, act on

the physical hilbert space of the theory, one finds support for the assertion that the infinite

extension can be dynamically realised.

Consider the metric of AdS5 in Poincare coordinates

ds2 =
1

z′2
(ηµνdxµdxν − dz′2) =

1

z′2
(dt′2 − dz′2 − dx2

i ) (5.1)

The nonrelativistic scaling limit that we will be considering is, as motivated in the

previous section

t′, z′ → ǫ0t′, ǫ0z′ xi → ǫ1xi. (5.2)

In this limit we see that only the components of the metric in the (t′, z′) directions

survive to give the metric on an AdS2. The d dimensional spatial slices parametrised by

the xi are fibred over this AdS2. The Poincare patch has a horizon at z′ = ∞ and to

extend the coordinates beyond this we will choose to follow an infalling null geodesic, in an

analogue of the Eddington-Finkelstein coordinates. Therefore define z = z′ and t = t′ + z′.

In these coordinates

ds2 =
1

z2
(−2dtdz + dt2) =

dt

z2
(dt − 2dz). (5.3)

10As mentioned earlier, an algebraically equivalent contraction of the bulk isometries was carried out

in [53](see also [50]). However the actual embedding of this contracted algebra in AdS is not manifestly

that of a nonrelativistic CFT on the boundary. In particular, their foliation of the bulk corresponds to

a boundary geometry which is a time dependent AdS2 × S2. This is natural from the point of view of

considering the worldvolume of a half BPS string. By considering Poincare coordinates and foliating the

bulk in terms of R3,1 slices, it is plausible that their limit will be related directly to ours. We thank Jaume

Gomis for helpful communication in this regard.
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5.1 Contraction of the bulk isometries

In the infalling Eddington-Finkelstein coordinates, the Killing vectors of AdS5 read as

Pi = ∂i, Bi = (t − z)∂i − xi∂t

Ki = (t2 − 2tz − x2
j)∂i + 2txi∂t + 2zxi∂z + 2xixj∂j

Jij = −(xi∂j − xj∂i)

H = −∂t, D = −t∂t − z∂z − xi∂i

K = −(t2 + x2
i )∂t − 2z(t − z)∂z − 2(t − z)xi∂i (5.4)

Here we have used the same labelling for the bulk generators as on the boundary to facilitate

easy comparison. Some additional details are given in appendix B.

Carrying out the scaling (5.2) we obtain the contracted Killing vectors

Pi = ∂i, Bi = (t − z)∂i, Ki = (t2 − 2tz)∂i, Jij = −(xi∂j − xj∂i)

H = −∂t, D = −t∂t−z∂z−xi∂i, K = −t2∂t−2(t−z)(z∂z +xi∂i) (5.5)

We see that at the boundary z = 0 these reduce to the contracted Killing vectors of the

relativistic conformal algebra. It can also be checked that these obey the same algebra

as (2.1) and (2.12) or equivalently (3.2) after the relabelling of (3.1).

The interpretation of most of the generators is straightforward. We note that the

H,K,D are scalars under the spatial SO(d − 1) and generate, as before, an SL(2, R). We

identify this as the isometry group of the AdS2 base of our Newton-Cartan theory.

We can again define an infinite family of vector fields in the bulk

M
(m)
i = (tm+1 − (m + 1)ztm)∂i

J
(n)
ij = −tn(xi∂j − xj∂i)

L(n) = −tn+1∂t − (n + 1)(tn − nztn−1)(xi∂i + z∂z) (5.6)

These vector fields reduce on the boundary to (3.3) and (3.4).

It is rather remarkable that these vector fields also obey the commutation relations of

the Virasoro-Kac-Moody algebra, the same as in the boundary theory

[L(m), L(n)] = (m − n)L(m+n) [L(m), J (n)
a ] = −nJ (m+n)

a

[J (n)
a , J

(m)
b ] = fabcJ

(n+m)
c [L(m),M

(n)
i ] = (m − n)M

(m+n)
i . (5.7)

How do we interpret all these additional vector fields from the point of view of the

bulk? Firstly, notice that the vector fields M
(n)
i and J

(n)
a only act on the spatial coordinates

xi (with t, z dependent coefficents). From the viewpoint of the fibre bundle structure, these

are simply rotations and translations on the spatial slices which happen to be dependent

on time as well as z. These are the isometries of the spatial metric γ of the previous

section. They are also trivially isometries of the AdS2 metric since they do not act on

those coordinates. In general, these transformations will have a non-trivial effect on the

dynamical connection coefficient (though trivial action on the non-dynamical christoffel
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coefficients). This is not unusual since it is only the vacuum configuration of the bulk

theory (in which the dynamical connections vanish) which preserves the full symmetry.

Now we come to the action of the Virasoro generators, L(n) which act non-trivially on

all coordinates. We have under its action (with infinitesimal parameter an)

z → z̃ = z[1 + an(n + 1)(tn − nztn−1)]

t → t̃ = t[1 + antn]

xi → x̃i = xi[1 + an(n + 1)(tn − nztn−1)]. (5.8)

In other words,

dz → d̃z = dz[1 + an(n + 1)(tn − nztn−1)]

+zann(n + 1)tn−2[(t − (n − 1)z)dt − tdz]

dt → d̃t = dt[1 + (n + 1)antn]

dxi → ˜dxi = dxi[1 + an(n + 1)(tn − nztn−1)]

+n(n + 1)anxit
n−2[(t − (n − 1)z)dt − tdz]. (5.9)

To see how this acts on the Newton-Cartan structure, consider first the above action

on the original Poincare metric on AdS5 but transformed to the Eddington-Finkelstein

coordinates (5.3). Only after that do we take the scaling limit (5.2). We find

ds2 =
1

z2
(−2dtdz + dt2 + dx2

i ) →
1

z2
(−2dtdz + dt2 + dx2

i )

+2n(n2 − 1)antn−2dt2 − 2
ann(n + 1)

z2
xidxi[(t − (n − 1)z)dt − tdz]. (5.10)

We now see that on taking the scaling limit (5.2) we have

ds2 =
1

z2
(−2dtdz + dt2) →

1

z2
(−2dtdz + dt2 + 2n(n2 − 1)anz2tn−2dt2). (5.11)

As expected the SL(2, R) subgroup L(0), L(±1) are exact isometries. The other L(n) are not

exact isometries. However, they are asymptotic isometries (See [55] and references therein).

Near the boundary z = 0 the diffeomorphisms generated by these vector fields leave the

metric unchanged upto a factor which has a falloff like z2. Thus these do not affect the

non-normalizable mode of the metric.

One expects that when the charges for these asymptotic isometries are constructed,

then just as in the Brown-Henneaux construction for AdS3 [55](and recent generalisations

to AdS2 [56]), there will actually be a central term due to boundary contributions. Thus

the Virasoro algebra will presumably act in a faithful way on the physical Hilbert space.

We also notice from the action of the L(n) (5.10) on the spatial metric that on the slices

of constant t, z, the action is again an isometry. Thus the L(n), J
(n)
a ,M

(N)
i together generate

(asymptotic) isometries of the spatial and AdS2 metrics γij and gab. Therefore it seems

natural to consider the action of these generators on the Newton-Cartan like geometry
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6 Concluding remarks

We have seen that the nonrelativistic conformal symmetry obtained as a scaling limit of the

relativistic conformal symmetry has several novel features which make it a potentially inter-

esting case for further study. The GCA, we have argued, is different from the Schrodinger

group which has been studied recently. It also has the advantage of being embedded within

the relativistic theory. Hence we ought to have realisations of the GCA in every interacting

relativistic conformal field theory. The obvious question is to understand this sector in a

particular case such as N = 4 Super Yang-Mills theory. And to see whether the infinite

dimensional extension can be dynamically realised (and its central charge computed). We

have provided indications why this might be the case generically.

Relatedly, in the bulk gravity dual to such a system one ought to be able to inde-

pendently compute the central term in the Virasoro algebra a la Brown-Henneaux. In

such cases one should be able to use the more general Kac-Moody algebra to constrain

the theory and its correlation functions much more. A straightforward generalisation of

our results would be to a supersymmetric extension of the Kac-Moody algebra. These and

related questions are currently under investigation.

The bulk description in terms of a Newton-Cartan like geometry is somewhat unfa-

miliar and it would be good to understand it better. In particular, one needs a precise

bulk-boundary dictionary to characterise the duality. At least implicitly this is determined

by taking the parametric limit of the relativistic duality.

Then there is the question of how such non-metric theories lift to string theories. This

is something we have not touched upon at all in this note. One might hope to get some

guidance from previous studies of nonrelativistic string theories, though in all these cases

one had additional fields like the two form Bµν turned on which made the sigma model

well defined. It is therefore not completely clear how to define a string theory on these

Newton-Cartan like geometries.11

In the case of the Schrodinger symmetry the dual gravity theory is proposed to live in

two higher dimensions than the field theory. This also provided the route for embedding

the dual geometry in string theory. It is interesting to ask if there is something analogous

in our case, whereby the GCA is realised as a standard isometry of a higher dimensional

geometry (e.g. (d + 3) dimensional for a (d + 1) dimensional field theory).

Coming back to the boundary theory, it is interesting to ask whether there are in-

trinsically non-relativistic realisations of the GCA, perhaps in a real life system. It is

encouraging in this context that the incompressible Euler equations concretely realise the

GCA, providing an example of a gapless non-relativistic system.

Note added. It has been brought to our attention that closely related infinite dimen-

sional algebras have been studied in the context of statistical mechanical systems in [61].

11There have been works attempting to quantise nonrelativistic theories of gravity directly in a canonical

framework [57, 58]. It would be interesting to see if these can be generalised to the case with negative

cosmological constant. This could have interesting implications for gauge-gravity dualities in the non-

relativistic setting.
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It would be interesting to study the precise connection as well as the potential realisations

in statistical mechanics further.
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A Galilean isometries

In the Newton-Cartan spacetime described in section 4, we do not have a spacetime metric.

Therefore the usual notion of an isometry as generated by a Killing vector field of the metric

is not applicable. There is consequently some ambiguity in the definition of an isometry.

We will paraphrase here some of the different possibilities as outlined in [47].

1. Galilei Algebra: This consists of all vector fields X satisfying

LXγµν = 0 LXτ = 0 LXΓα
µν = 0. (A.1)

This gives rise to the usual set of vector fields which generate the finite dimensional

Galilean algebra of uniform translations (in space and time), uniform velocity boosts

and spatial rotations.

2. Milne Algebra: This consists of all vector fields X satisfying

LXγµν = 0 LXτ = 0 LXΓνα
µ = 0 (A.2)

where Γνα
µ = γβνΓα

µβ. The set of vector fields X satisfying this condition is an

infinite dimensional extension of the Galilean algebra, now involving arbitrary time

dependent boosts/accelerations.

3. Coriolis Algebra: This consists of all vector fields X satisfying

LXγµν = 0 LXτ = 0 LXΓµνα = 0 (A.3)

where Γµνα = γρµγβνΓα
ρβ. The set of vector fields X satisfying this condition is a

further infinite dimensional extension of the Milne algebra, now involving in addition

to the arbitrary boosts or accelerations, arbitrary time dependent rotations as well.
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B Killing vectors of AdSd+2 and bulk contraction

Here we list the killing vectors of AdSd+2 in the d+3 dimensional Minkowskian embedding

space and then rewrite them in intrinsic AdS coordinates. For taking the contraction, we

will work in Poincare coordinates.

We denote flat d + 1-dimensional space with co-ordinates ya with a = 1, .., d + 1.

Embedding equation:

uv + ηaby
ayb = 1 (B.1)

ds2 = dudv + ηabdyadyb (B.2)

where ηab has a form diag(1,−1,−1, . . . − 1). Also note that we have rescaled the AdSd+2

radius to 1.

We wish to write in explicit SO(d + 1, 2) notation. So we choose u = y0 + yd+2 and

v = y0 − yd+2. Now we would be interested in the co-ordinates on the Poincare patch.

z = v−1 = (y0 − yd+2)
−1 (B.3)

t = v−1y1 = (y0 − yd+2)
−1y1 (B.4)

xi = v−1yi = (y0 − yd+2)
−1yi (B.5)

where we label i = 2, 3 . . . d + 1.

The constraint equation becomes:

u = z − (z)−1(t2 − x2
i ) (B.6)

which gives the metric on the Poincare patch (5.1).

We can take the inverse transformations and express the derivatives of the Poincare

co-ordinates in terms of derivatives of y’s and take various linear combinations to obtain

M01 = −(y0∂1 − y1∂0)

= −
1

2
(z2 + 1 + t2 + x2

i )
∂

∂t
− zt

∂

∂z
− txi

∂

∂xi

M0i = −(y0∂i + yi∂0)

= −
1

2
(z2 + 1 − t2 + +x2

i + x2
j)

∂

∂xi

+ zxi
∂

∂z
+ txi

∂

∂t
+ x2

i

∂

∂xi

+ xixj
∂

∂xj

(j 6= i)

M1i = −(y1∂i + yi∂1) = −t
∂

∂xi
− xi

∂

∂t

Mij = −(yi∂j − yj∂i) = −

(

xi
∂

∂xj
− xj

∂

∂xi

)

M0,d+2 = −(y0∂d+2 + yd+2∂0) = −z
∂

∂z
− t

∂

∂t
− xi

∂

∂xi

M1,d+2 = −(y1∂d+2 + yd+2∂1)

= −
1

2
(z2 + t2 + x2

i − 1)
∂

∂t
− zt

∂

∂z
− txi

∂

∂xi
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Mi,d+2 = −(yd+2∂i + yi∂d+2)

= −
1

2
(z2 − t2 + x2

i + x2
j − 1)

∂

∂xi
+ zxi

∂

∂z
+ txi

∂

∂t
+ x2

i

∂

∂xi
+ xixj

∂

∂xj
(j 6= i)

In the above equations, the repeated indices j are summed over in M0i and Mi,d+2.

To connect with our notation for the boundary generators, we define:

H = M01 − M1,d+2; K = M01 + M1,d+2; D = M0,d+2

Pi = −M0i + Mi,d+2; Ki = M0i + Mi,d+2; Bi = −M1i (B.7)

Mij = Mij

After transforming to infalling Eddington-Finkelstein coordinates the generators

of (B.7) become then ones given in (5.4) We then carry out the contraction on these

Killing vectors using the scaling: z = ǫ0z̃, t = ǫ0t̃ and xi = ǫ1x̃i and obtain (5.5).
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